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In this paper, systems with higher order regular lagrangians are reduced to be first-
order singular lagrangians using constrained auxiliary description. The new extended
lagrangians are investigated using the Hamilton-Jacobi formulation. Besides, the action
function is obtained and the system is quantized using the WKB approximation.
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1. INTRODUCTION

The Hamiltonian formulation for singular lagrangian has been initiated by
Dirac (1950, 1964). This subject has defined an area of specialization in mathemat-
ical physics (Faddav and Jackiw, 1988; Henneaux and Teitelboim, 1992; Longhi
and Lasanna, 1987). Dirac’s approach distinguishes between two types of con-
straints, the first-and second-class. Many physicists believe that, this destination
is important in the classical theories as in quantum theories.

More recently, an approach based on Hamilton-Jacobi formalism was devel-
oped to study singular first-order systems (Guler, 1992, 1996; Rabei and Guler,
1992a, 1992b). In this approach, the equations of motions are written as total
differential equations in many variables. Besides, there is no need to distinguish
between the two types of constraints. In Rabei et al. (2002), the action integral is
determined and systems with first order Lagrangian are quantized using the WKB
approximation. In addition, the Lagrangian with linear velocities are quantized in
Muslih et al. (2005).

The Hamiltonian formulation for systems with higher order Lagrangian ini-
tiated by Ostrogradsky (1850). This formalism seems to be different from the
conventional canonical formalism. The structure of phase space and its simplistic
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geometry is not immediately transparent. This leads to confusion when considering
canonical or path integral quantization.

The higher-order Lagrangians treated as singular first order Lagrangians
in Pons (1989). A canonical formalism presented using the Dirac’s method for
constrained systems. In this work, systems with regular higher order Lagrangian
treated as systems with singular first order Lagrangian using the Hamilton-Jacobi
approach (Guler, 1992, 1996; Rabei and Guler, 1992a, 1992b). The action function
is determined using the proposed theory given in Nawafleh et al. (2004). Besides,
this action used to determine the solutions of the equations of motion for higher-
order Lagrangians. Then, systems with higher-order Lagrangians quantized using
the WKB approximation.

2. REVIEW OF THE HAMILTON-JACOBI FORMULATION

For any physical system, the Lagrangian L = L(qi, q̇i), i = 1, 2, . . . , N is
called regular if the rank of the Hessian matrix Wij = ∂2L

∂q•
i ∂q•

j

is N. Otherwise, it is

called singular.
The generalized momenta pi , corresponding to the generalized coordinates

qi defined as:

pi = ∂L

∂q•
i

, i = 1, 2, . . . , N (2.1)

If the rank of the Hessian matrix is (N − R) then, the definition (2.1) leads
to relations of the form:

H ′
µ(qi, pn) = pµ + Hµ = 0, µ = N − R + 1, . . . , N ; (2.2)

Following to Dirac these relations are called primary constraints (Dirac, 1950,
1964).

Following Guler (1992, 1996) and Rabei and Guler (1992a, 1992b) the cor-
responding set of the HJPDE’s written as:

H ′
0 = p0 + H0 = ∂S

∂t
+ H0

(
qβ, qa, pa = ∂S

∂qa

)
= 0

H ′
µ = pµ + Hµ = ∂S

∂qµ

+ Hµ

(
qβ, qa, pa = ∂S

∂qa

)
= 0

β = 0, N − R + 1, . . . , N ; a = 1, . . . , N − R

(2.3)
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H0 Being the usual Hamiltonian, and S(t, qa, qµ) being the Hamilton-Jacobi func-
tion. The equations of motion written as total differential equations:

dqa = ∂H ′
0

∂Pa

dt + ∂H ′
µ

∂pa

dqµ,

dpi = −∂H ′
0

∂qi

dt − ∂H ′
µ

∂qi

dqµ.

(2.4)

These equations are integrable (Muslih and Guler, 1995; Muslih, 2004) if

dH ′
µ = 0 (2.5)

These relations are identically satisfied or lead to new secondary constraints.
Then one can solve equations (2.4) to obtain the coordinates qa and momenta pn

as functions of qµ and t.
A general theory for solving the set of Hamilton-Jacobi partial differential

equations for constrained systems (2.3) proposed in Rabei et al. (2002). The
solution is given in the form:

S(t, qa, qµ) = f (t) + Wa(Ea, qa) + fµ(qµ) + A (2.6)

Where Ea are (N − R) constants of integration, and A is another constant. Here
qµ treated as independent variables, just as the time t, in addition, the equations of
motions are obtained using the canonical transformation as follows:

µa = ∂S

∂Ea

, pi = ∂S

∂qi

. (2.7)

Where, µa are constants and they can be determined from the initial conditions.
These equations can be solved to furnish qa and the momenta pn as:

qa = qa(µa,Ea, qµ, t), pi = pi(µa,Ea, qµ, t). (2.8)

3. OSTROGRADSKY CONSTRUCTION FOR HIGHER
ORDER LAGRANGIAN

The starting point is to consider a lagrangian with N generalized coordinates
and depends on up to the m-th time derivatives i.e.

L
(
qi, q̇i , . . . , q

(m)
i

)
;

(s)
qi =

(s)
d qi

dt (s)
(3.1)

where s = 0, 1, . . . , m and i = 1, . . . , N . For such systems the Euler-Lagrange
equations of motions, obtained through Hamilton’s principle of stationary action,



Quantization of Higher Order Regular Lagrangians 887

as:

m∑
s=0

(−1)s
ds

dts

(
∂L

∂q
(s)
i

)
= 0 (3.2)

This is a system of N ordinary differential equations of 2m − th order, so we
need 2mN initial conditions to solve it.

The Hamiltonian formalism for theories with higher order derivatives
(Ostrogradsky, 1850), treats derivatives q

(s)
i (s = 0, . . . , m − 1)as coordinates. So

we will indicate this writing them as q
(s)
i = q(s)i . In Ostrogradski’s formalism, the

momenta conjugated respectively to q(m−1)i and q(s−1)i(s = 0, . . . , m − 1) intro-
duced as Ostrogradsky (1850).

P(m−1)i ≡ ∂L

∂q
(m)
i

(3.3)

P(s−1)i ≡ ∂L

∂q
(s)
i

− ṗ(s)i ; s = 1, . . . , m − 1 (3.4)

The Hamiltonian defined as:

H =
m−1∑
s=0

P(s)iq
(s+1)
i − L

(
qi,...,q

(m)
i

)
(3.5)

(The Einstein’s summation rule for repeated indices has been used throughout this
work).

Hamilton’s equations of motion are written as

q̇(s)i = ∂H

∂q(s)i
= {q(s)i , H }, (3.6)

Ṗ(s)i = − ∂H

∂P(s)i
= {P(s)i , H }, (3.7)

where {,} is the Poisson bracket defined as

{A,B} =
m−1∑
s=0

∂A

∂q(s)i

∂B

∂p(s)i
− ∂B

∂q(s)i

∂A

∂p(s)i
. (3.8)
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4. THE HAMILTON-JACOBI TREATMENT OF HIGHER
ORDER REGULAR LAGRANGIANS AS FIRST ORDER
SINGULAR LAGRANGIANS

For simplicity, let us consider higher order Lagrangian of one degree of
freedom,

L0
(
q, q̇, . . . , q(m)) Where q(m) = dmq

dtm
(4.1)

Now let us introduce new variables ql and required the constraints.

q̇l = ql+1, l = 0, 1, . . . , m − 2 (4.2)

Where

q0 = q

Then, we construct the singular first-order lagrangian as:

LT (ql, qm−1, q̇l , q̇m−1, λl) = L0(ql, qm−1, q̇m−1) + λl(q̇l − ql+1) (4.3)

And the canonical Hamiltonian reads as:

Ht (ql, qm−1, pm−1, λl) = plq̇l + pm−1q̇m−1 + πlλ̇l − LT (ql, qm−1, q̇l , q̇m−1, λl)
(4.4)

Where

pm−1 = ∂LT

∂q̇m−1
; pl = ∂LT

∂q̇l

= λl ; πl = ∂LT

∂λ̇l

= 0 (4.5)

Following to Guler (1992) and Rabei and Guler (1992), the set of Hamilton-Jacobi
partial differential equations takes the form:

H ′
t = Pt + Ht (ql, qm−1, pm−1, λl) (4.6)

�′
l = πl (4.7)

H ′
l = pl − λl (4.8)

Where

pt = ∂S

∂t
, πl = ∂S

∂λl

,

pl = ∂S

∂ql

, pm−1 = ∂S

∂qm−1
.

Moreover, the equations of motion can be written as total differential equa-
tions as follows:

dqs = ∂H ′
t

∂ps

dt + ∂�′
l

∂ps

dλl + ∂H ′
l

∂ps

dql (4.9)



Quantization of Higher Order Regular Lagrangians 889

dps = −∂H ′
t

∂qs

dt − ∂�′
l

∂qs

dλl − ∂H ′
l

∂qs

dql (4.10)

dλr = ∂H ′
t

∂πr

dt + ∂�′
l

∂πr

dλs + ∂H ′
l

∂πr

dql (4.11)

dπr = −∂H ′
t

∂λr

dt − ∂�′
l

∂λr

dλl − ∂H ′
l

∂λr

dql (4.12)

where s = 0, 1, . . . , m − 1 and r = 0, 1, . . . , m − 2 Making use of Eqs. (4.6–8),
the previous equations can be written in the following form:

dql = dql (4.13)

dqm−1 = ∂H ′
t

∂pm−1
dt (4.14)

dpl = −∂H ′
t

∂ql

dt (4.15)

dpm−1 = − ∂H ′
t

∂qm−1
dt (4.16)

dλl = dλl (4.17)

dπl = −∂H ′
t

∂λl

dt + dql (4.18)

The total differential equations are integrable if, and only if,

dH ′
t = dpt − dHt = 0 (4.19)

dH ′
l = dpl − dλl = 0 (4.20)

d�′
l = dπl = 0 (4.21)

Using Eq. (4.15), then Eq. (4.20) can be written as:

∂H ′
t

∂ql

dt + dλl = 0 (4.22)

Thus, the integrability conditions lead to:

λ̇l = −∂H ′
t

∂ql

(4.23)

In addition, Eqs. (4.18) take the form:

π̇l = −∂H ′
t

∂λl

+ q̇l (4.24)
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Thus, the equations of motion can be written as:

ṗs = −∂H ′
t

∂qs

(4.25)

q̇r = ∂H ′
t

∂λr

(4.26)

q̇m−1 = ∂H ′
t

∂pm−1
(4.27)

These equations are equivalent to the following Euler-Lagrange equations

d

dt

(
∂LT

∂q̇l

)
− ∂LT

∂ql

= 0 (4.28)

d

dt

(
∂LT

∂q̇m−1

)
− ∂LT

∂qm−1
= 0 (4.29)

d

dt

(
∂LT

∂λ̇l

)
− ∂LT

∂λl

= 0 (4.30)

Equations (4.30) give the constraints (4.2). While, Eqs. (4.28) for the variables
ql+1 can be written as:

d

dt

(
∂LT

∂q̇l+1

)
− ∂LT

∂ql+1
= 0 (4.31)

Making using of Eqs. (4.3) and (4.5), Eqs. (4.31) take the form:

d

dt
(pl+1) − ∂L0

∂ql+1
+ λl = 0 (4.32)

which, can be written as:

pl = ∂L0

∂ql+1
− ṗl+1 l = 1, 2, . . . , m − 2 (4.33)

These equations can be arranged as:

pl+1 = ∂L0
∂ql+2

− ṗl+2

...
pm−2 = ∂L0

∂qm−1
− ṗm−1

(4.34)

Using back substitution, we get

pl = ∂L0

∂ql+1
− d

dt

(
∂L0

∂ql+2

)
+ d2

dt2

(
∂L0

∂ql+3

)
+ · · ·

+ (−1)m−1 dm−l−1

dtm−l−1

(
∂L0

∂q̇m−1

)
. (4.35)
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Moreover, these equations represent the momenta in Ostrogradsky construction
(Ostrogradsky, 1850).

If l = 0, Eq. (4.35) takes the form:

p0 = ∂L0

∂q1
− d

dt

(
∂L0

∂q2

)
+ d2

dt2

(
∂L0

∂q3

)
+ · · ·

+ (−1)m−1 dm−1

dtm−1

(
∂L0

∂q̇m−1

)
. (4.36)

Taking the first derivative with respect to t for Eq. (4.36), we get

∂L0

∂q0
− d

dt

(
∂L0

∂q1

)
+ d2

dt2

(
∂L0

∂q2

)
− d3

dt3

(
∂L0

∂q3

)
+ · · ·

+ (−1)m
dm

dtm

(
∂L0

∂q̇m−1

)
= 0. (4.37)

This equation can be written as

∂L0

∂q
− d

dt

(
∂L0

∂q̇

)
+ d2

dt2

(
∂L0

∂q̈

)
− d3

dt3

(
∂L0

∂q(3)

)
+ · · ·

+ (−1)m
dm

dtm

(
∂L0

∂q(m)

)
= 0 (4.38)

Which can be finally has the form:

m∑
s=0

(−1)s
d (s)

dt (s)

(
∂L0

∂q(s)

)
= 0. (4.39)

This equation is the Euler equation for regular higher order lagrangian
(Pimentel and Teixeira, 1998).

4.1. The Hamilton-Jacobi Function

The set of HJPDE’s (4.6–8) can be written in the following form:

H ′
t = ∂S

∂t
+ Ht

(
ql, qm−1, λl,

∂S

∂ql

,
∂S

∂qm−1

)
= 0 (4.40)

�′
l = ∂S

∂λl

= 0 (4.41)

H ′
l = ∂S

∂ql

− λl = 0 (4.42)
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Making use of Eq. (2.6) the action function takes the form

S(qm−1, ql, λl, t) = f (t) + Wm−1(Em−1, qm−1) + fl(ql) + f ′
l (λl) + A (4.43)

Where, Em−1 is the constant of integration. Here ql and λl are treated as
independent variables as well as the time. The equations of motion are obtained
using the canonical transformations (Nawafleh et al., 2004) as follows:

µm−1 = ∂S

∂Em−1
; pl = ∂S

∂ql

; πl = ∂S

∂λl

. (4.44)

Where, µm−1 is a constant and can be determined from the initial conditions.
Eqs. (4.44) can be solved to obtain qm−1 and the momenta pl as:

qm−1 = qm−1(µm−1, Em−1, ql, λl, t), pl = pl(µm−1, Em−1, ql, λl, t) (4.45)

Using Eqs. (4.41) and (4.43) one can find that:

∂f ′
l (λl)

∂λl

= 0

Thus,

f ′
l (λl) = constant (4.46)

In addition, from Eq. (4.44), one finds,

∂fl(ql)

∂ql

− λl = 0

fl(ql) = λlql (4.47)

Moreover, using the fact that f (t) = −Em−1t one can write the Hamilton-Jacobi
function in the following form:

S(qm−1, ql, λl, t) = −Em−1t + Wm−1(Em−1, qm−1) + λlql + A′ (4.48)

Where A′ is constant.

4.2. The WKB Approximation

A general theory for using the WKB approximation for constrained systems
to find the wave function and the connection between the classical and Quantum-
mechanical equations of motion has been given in Rabei et al. (2002). According
to this theory, the wave function for our system can be written as:

ψ(ql, qm−1, λl, t) = ψ0m−1(qm−1)e
iS(ql ,qm−1 ,λl ,t)

h (4.49)

Where

ψ0m−1(qm−1) = 1√
pm−1(qm−1)
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The wave function in Eq. (4.49) satisfies the following conditions

H ′
t ψ = ptψ + Htψ = 0

�′
lψ = πlψ = 0 (4.50)

H ′
l ψ = plψ − λlψ = 0

These conditions are obtained when the dynamical coordinates and momenta are
turned into there corresponding operators:

ps → p̂s = h

i

∂

∂qs

, (4.51)

p0 → p̂0 = h

i

∂

∂t
, (4.52)

πl → π̂
l

= h

i

∂

∂λl

, (4.53)

5. ILLUSTRATIVE EXAMPLE

Consider the following second-order Lagrangian

L = 1

2
(q̈2 − q̇2) (5.1)

Which is describes the one-dimensional motion of black box in which a harmonic
oscillator is hidden (a system of units is chosen such that the angular frequency of
oscillations is one) (Olga, 1997).

This example has been solved using the Ostrogradsky theory and the results
found to be:

q = at + b cos(t + δ) + c (5.2)

p0 = ∂L

∂q(1)
− ṗ1 = −a (5.3)

p1 = ∂L

∂q(2)
= −b cos(t + δ) (5.4)

Where a, b, c and δ are constants.
According to our treatment, the above Lagrangian can be written as:

L = 1

2

(
q̇2

1 − q2
1

)
Where q̇ = q̇ 0 = q1

With the aid of Eq. (4.3) the extended lagrangian is

LT = 1

2
q̇2

1 − 1

2
q2

1 + λ0(q̇0 − q1) (5.5)
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Moreover, using Eq. (4.5), one finds that:

p1 = ∂LT

∂q̇1
= q̇1;

p0 = ∂LT

∂q̇0
= λ0;

π0 = ∂LT

∂λ̇0
= 0.

The canonical Hamiltonian can be obtained as:

Ht = p2
1

2
+ 1

2
q2

1 + λ0q1 (5.6)

Thus, the set of HJPDE’s can be written as:

H ′
t = pt + Ht = pt + p2

1

2
+ 1

2
q2

1 + λ0q1

�′
0 = π0 = 0 (5.7)

H ′
0 = p0 − λ0 = 0

Using the Eqs. (4.23), (4.25), (4.26) and (4.27), one gets

ṗ0 = 0 (5.8)

q̇0 = q1 (5.9)

ṗ1 = −q1 − λ0 (5.10)

q•
1 = p2 (5.11)

Equation (5.9) represents the constraint and using the integrability condition (4.23),
one finds

λ̇0 = −∂H ′
t

∂q0
= 0 (5.12)

Thus, Eq. (5.10) leads to:

p̈1 + q̇1 = 0 (5.13)

Using Eq. (5.11), one finds:

q
(3)
1 + q̇1 = 0 (5.14)

Where p2 equals toṗ1, and using Eq. (5.9), we have:

q(4) + q̈ = 0 (5.15)
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Thus, the general solutions are

q = at + b cos(t + δ) + c (5.16)

p0 = ∂L

∂q(1)
− ṗ1 = −a (5.17)

p1 = ∂L

∂q(2)
= −b cos(t + δ) (5.18)

Where, a, b, c are constants. These solutions are in exact agreement with the
solutions (5.2–4).

The corresponding HJPDE’s are calculated as:

H ′
t = ∂S

∂t
+ 1

2

(
∂S

∂q1

)2

+ 1

2
q2

1 + λ0q1 = 0 (5.19)

�′
0 = ∂S

∂λ0
= 0 (5.20)

H ′
0 = ∂S

∂q0
− λ0 = 0 (5.21)

According to Rabei et al. (2002) and Nawafleh et al. (2004) the general proposed
solution for this set of equations can be determined as:

S(q1, q0, λ0, t) = −E1t + W1(E1, q1) + λ0q0 + A′ (5.22)

Substituting Eq. (5.22) in Eq. (5.19), we have

−E1 + 1

2

(
∂W1

∂q1

)2

+ 1

2
q2

1 + λ0q1 = 0 (5.23)

and this equation leads to

W1(q1, E1) =
∫ √

2E1 + λ2
0 − (q1 + λ0)2dq1 (5.24)

Thus, the Hamilton-Jacobi function becomes

S = −E1t +
∫ √

2E1 + λ2
0 − (q1 + λ0)2dq1 + λ0q0 + A′ (5.25)

The solution for the generalized coordinates are obtained using Eqs. (4.44):

µ1 = ∂S

∂E1
= −t +

∫
dq1√

2E1 + λ2
0 − (q1 + λ0)2

(5.26)

π0 = ∂S

∂λ0
= q0 −

∫
q1√

2E1 + λ2
0 − (q1 + λ0)2

dq1 (5.27)
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These two equations are solved respectively, to give

q1 =
√

2E1 + λ2
0 sin (µ1 + t) − λ0 (5.28)

q = −λ1(µ1 + t) −
√

2E1 + λ2
0 cos (µ1 + t) (5.29)

This solution is equivalent to the solution obtained in (5.16).
Besides, the generalized momenta can be determined as

p0 = ∂S

∂q0
= λ0. (5.30)

p1 = ∂S

∂q1
=

√
2E1 + λ2

0 − (q1 + λ0)2 (5.31)

Substituting Eq. (5.28) in Eq. (5.31), we have the following solution.

p1 =
√

2E1 + λ2
0 cos(µ1 + t) (5.32)

Again, it is equivalent to solution (5.18).
The wave function for our Lagrangian can be determined using Eq. (4.49) as:

ψ(q1, q0, λ0, t) = ψ01(q1)e
iS(q1 ,q0 ,λ0 ,t)

h (5.33)

Where

ψ01(q1) = 1√
p1(q1)

= [(
2E1 + λ2

0

) − (q1 + λ0)2
] −1

4 .

And

S = −E1t +
∫ √

2E1 + λ2
0 − (q1 + λ0)2dq1 + λ0q0 + A′

Taking the limit, h → 0, this wave function satisfies the following conditions:

H ′
t ψ =

[
h

i

∂

∂t
− h2

2

∂2

∂q2
1

+ 1

2
q2

1 + λ0q1

]
ψ = 0;

�′
0ψ = h

i

∂

∂λ0
ψ = 0; (5.34)

H ′
0ψ = h

i

∂

∂q0
ψ − λ0ψ = 0.

6. CONCLUSION

In this paper, the higher order regular Lagrangians treated as first-order
singular Lagrangians. In physical terms, this means that each velocity dq

dt
replaced
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with a new function q1and then, the constraint q1 − dq

dt
= 0 is added to the original

Lagrangian. In the same manner, the acceleration is replaced by q2 and so on. In
other words, the new Lagrangian is of first-order singular Lagrangian.

The extended Lagrangian treated using the Hamilton-Jacobi approach. The
action function obtained and the system quantized using the WKB approximation.

Most of the literature in physics on the Hamiltonian treatment of higher order
lagrangian used Ostrogradsky’s method. This method is written in an ambiguous
mathematical language. The time derivatives of the coordinates of different order
have to be considered as being independent. In our treatment, the equations of
motion are written and the system is quantized using the natural mathematical
language. We believe that in this treatment, the local structure of phase space
and its local simplistic geometry is made more transparent than in Ostrogradsky’s
approach.

The generalization of this treatment to N degrees of freedom and to the
singular systems is straightforward.
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